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Abstract
A Machine-Learning (ML) based detection scheme that automatically detects Alfvén
Eigenmodes (AE) in a labelled DIII-D database is presented here. Controlling AEs is important
for the success of planned burning plasma devices such as ITER, since resonant fast ions can
drive AEs unstable and degrade the performance of the plasma or damage the first walls of the
machine vessel. Artificial Intelligence could be useful for real-time detection and control of AEs
in steady-state plasma scenarios by implementing ML-based models into control algorithms that
drive actuators for mitigation of AE impacts. Thus, the objective is to compare differences in
performance between using two different recurrent neural network systems (Reservoir
Computing Network and Long Short Term Memory Network) and two different representations
of the CO2 phase data (simple and crosspower spectrograms). All CO2 interferometer chords
are used to train both models, but only one is processed during each training step. The results
from the model and data comparison show higher performance for the RCN model (True
Positive Rate = 90% and False Positive Rate = 14%), and that using simple magnitude
spectrograms is sufficient to detect AEs. Also, the vertical CO2 interferometer chord passing
near the center is better for ML-based detection of AEs.
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1. Introduction

The successful operation of planned nuclear fusion devices
such as ITER depends on confined populations of super-
thermal particles that heat fuel ions for a self-sustaining
plasma burn [1]. If confined, alpha particles born from fusion
reactions can provide the heating required to reach ignition. If
these alphas become unconfined, they can carry away fusion
power to the inner walls of the vessel and damage the first
walls [2, 3]. The heat loss can be replaced using auxiliary
heating mechanisms such as Neutral Beam Injection (NBI) or
Radio Frequency (RF) waves and both of these methods can
create populations of fast ions that are useful for momentum
transfer and current drive [4]. Fast ions born from fusion reac-
tions or external heating can resonate with special types of
plasma waves called Alfvén Eigenmodes (AEs) [5–7], trans-
fer energy to the wave, drive the plasma unstable and degrade
energy confinement [8, 9]. Also, particle redistribution can
expel fast ions from the plasma [8–14] and damage the inner
walls of the vessel [15, 16]. Therefore, studying fast ions and
controlling AEs is imperative for the realization of controlled
nuclear fusion.

Real-time control of AEs in high performance burning plas-
mas without damage to the inner walls is a high priority for the
Plasma Control System (PCS) at ITER [17, 18]. It is currently
an important goal to determine the best set of external actu-
ators in order to control AEs and alpha losses [19]. Suitable
techniques include Electron Cyclotron Resonance Heating
(ECRH) and current drive, and NBI. Since AEs can appear
for short time scales on the order of milliseconds, simple
feed-forward physics models are used to detect and control
AEs. There is a need in the community for models with quick
response times that could accurately detect the presence of
AEs in real-time experiments.

Machine Learning (ML) applications in magnetic con-
finement fusion energy are growing and exciting opportun-
ities exist in the fast-ion physics research field. Currently,
the largest application of ML is in the area of disruption
mitigation, where models are trained to prevent the rapid
loss of thermal and magnetic energy during a quench of
the plasma [20–27]. Surrogate model generation and experi-
mental planning also benefit from data-driven methods [28].
On the other hand, ML in fast-ion research is a relat-
ively new field. For example, Alfvénic and magnetohydro-
dynamicmodeswere detected using deep learning-basedmod-
els, manually-labeled targets and magnetics on TJ-II [29] and
COMPASS [30]. More examples used supervised learning to
detect AEs [29–31], and data mining techniques combined
with clustering for extraction of plasma fluctuations [32, 33].

In recent years, significant advancements have been made
in detecting and controlling AEs using Electron-Cyclotron

Emission (ECE) data on DIII-D. Originally, in-shot variation
of neutral beam energy showed promise for AE control [34],
then the first active real-time control of AEs in a tokamak util-
ized modulated beams to tune the drive for AEs using feed-
back from high resolution ECE signals [15]. Shortly after, the
Large 2009-2017 DIII-D AE Energetic Particle Database [35]
was created to better understand low frequency AEs and was
later used for ML analysis in two papers [36, 37]. Deep
Neural Networks were trained using ECE data in both stud-
ies. Reservoir Computing Networks (RCN) and Multi-layer
Perceptron (MLP) Networks were trained in the former and
latter study, respectively, and both achieved high performance.
Section 2 of this paper discusses the Large AE-EP Database in
more detail.

In this work, we focus on training Recurrent Neural
Networks and labels created from the Large AE-EP Database,
but use CO2 interferometer data instead of ECE since there
are several advantages: (1) calculating crosspower spectro-
grams between two chords is common in the fast-ion phys-
ics community since AE patterns can be highly visible in
this representation of the data, (2) the 1D phase signals are
routinely processed by the PCS for nearly every discharge and
can be used for real-time control in future DIII-D experiments,
and (3) although ECE measurements are high resolution and
can measure AE fluctuations with good signal-to-noise, issues
associated with resonances and cutoff frequencies pose chal-
lenges for AE detection. Using the CO2 interferometer for AE
identification is useful for reliably detecting AEs since it does
not have limitations with cutoffs. For reasons 2 and 3, more
shots are available in the Large AE-EP Database to train data-
driven models. The baseline technique was initially trained
to detect AEs using CO2 interferometer data in a conference
paper [38], and we report significant advancements here.

Building from our prior work, the primary objective of this
paper is to study the performance by comparing the following:
(1) different feature sets (simple magnitude and crosspower
spectrograms), (2) recurrent neural networks (RCNvs LSTM),
and (3) stacking outputs vs individual crosspower. The State-
Of-The-Art (SOTA) technique in [36] used 40 stacked time-
domain signals of ECE data and created labels from the Large
AE-EP Database to train an RCN. We instead use spectro-
grams of CO2 interferometer data, and individually forward
pass each chord through both Neural Networks one-at-a-time
and compare the results. The aim is tomatch our prior perform-
ance by training with CO2 interferometer data for the potential
long-term goal of creating an ML detector that could be useful
in real-time AE control.

This paper is organized as follows: the CO2 interfero-
meter on DIII-D, labels from the Large AE-EP Database and
important challenges are discussed in section 2. The results
of model and feature comparison are shown in section 3.
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Correlation analysis between predictions and metadata (equi-
librium, beam, etc) are reported in section 4. Our conclusions
appear in section 5.

2. Experimental data

DIII-D is a well diagnosed tokamak housing many diagnostic
systems that measure the effects of AEs, with large amounts
of available data from decades of experimental campaigns.
Electron cyclotron emission [39], CO2 interferometry [40],
beam emission spectroscopy [41], and magnetic fluctuation
diagnostic systems [42] can be used to study the effects of
fast-ion driven instabilities. Diagnostic and plasma informa-
tion can be relayed to actuators for real-time control of AEs in
DIII-D experiments [19, 34, 43, 44].

The two-color vibration compensated CO2 interferometer
is a real-time system routinely used for feedback control of
the plasma state at DIII-D. Additionally, it can provide use-
ful information about the internal mode structure of AEs since
it observes the AE induced density perturbations with a res-
olution in the ∆(nL)/nL∼ 10−5 range at the frequencies of
interest. A layout of the CO2 interferometer for an example
equilibrium is displayed in figure 1. All four chords (three
vertical and one horizontal) are digitized for 9 s per shot at a
rate of 1.67MS s−1, and the CO2 phase data are studied in this
work since AE frequencies are well above typical mechanical
vibration frequencies. Also, the phase data are processed in
real time by the PCS at DIII-D, making the AE detector in this
work applicable for actuator driven mitigation of AE impacts.

In the past, identfication of AEs was usually done in a
post-shot framework using crosspower spectrograms of CO2

interferometer data and other AE fluctuation diagnostics (or
plasma parameters). Doing spectral analysis is useful since
generating spectrograms can remove low frequency noise and
machine vibrations seen in the 1D signals. Although this
method worked, it can be time consuming and requires extens-
ive domain knowledge. In this work, we automate the identi-
fication process by training RCNs and LSTMs using simple
and crosspower spectrograms of CO2 interferometer data.

The original curated Large AE-EP Database was created
to investigate the dependence of AE stability on plasma
parameters in over 1139 shots [35]. It includes the occur-
rences of six plasma instabilities: Ellipticity (EAE), Toroidal
(TAE), Reversed-Shear (RSAE), Beta-Induced (BAE), Low-
Frequency Mode (LFM), and Energetic Particle-Induced
Geodesic Acoustic Mode (EGAM) [35]. Table I of [36] shows
a description of these modes. Times were selected when the
various AEs were stable, marginal, or unstable. The number
of time stamps per discharge was chosen to sample changes in
plasma parameters and mode activity in a representative fash-
ion. Time stamps usually appear in the middle of a type of
activity, and many occur during the first 1.9 s since some AEs
depend on the q profile and q steadily evolves during that phase
of the discharge.

There are several challenges using the Large AE-EP
Database and they are addressed here. The time stamps need
to first be made binary and we adopt the one-hot encoding

Figure 1. The elevation view of the CO2 interferometer installed on
DIII-D for shot #178631. Three vertical chords are located at Rm of
1.48m, 1.94m and 2.10m, and the radial chord is horizontal on the
midplane. The black curves are the magnetic flux surfaces (the last
closed flux surface is in blue). The magnetic axis is denoted by the
blue × symbol.

Figure 2. The CO2 interferometer part of the AE-EP database
begins and ends with DIII-D shot #132215 and #178880,
respectively. The presence of AEs are plotted against these
chronological shot numbers. In this figure, we show that TAE and
RSAE are labelled frequently across many experimental campaigns.
LFM, BAE and EAE have relatively sparse representation in the
database.

method described in table II of [36]. We consider AEs ori-
ginally marked unstable as being present in the discharge and
mark them as 1, otherwise flags are reassigned to 0. Figure 2
shows the presence ofAEs over the selected 1069 shots studied
in this paper. Since predicting single time stamps is a challenge
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Figure 3. The occurrence of labels for the training set (801 shots)
and validation set (268 shots) are skewed towards TAE and RSAE.
The sets are randomly shuffled to preserve distribution shape. In
comparision, there are barely any LFM or EAE instances
throughout the database.

for ML-based methods, the re-assigned flag for all AEs are
widened over ±125 ms. This completes the creation of the
labels used to train the RCN and LSTM in this work. The third
challenge is shown in figure 3, where the distribution of labels
is imbalanced and heavily skewed towards TAE and RSAE.
This imbalance motivates using True Positive Rate (TPR) and
False Positive Rate (FPR) as the metrics of success since the
accuracy metric would be 94% if a model always predicted 0.
TPR and FPR are defined as follows:

TPR=
TP

TP+FN

FPR=
FP

FP+TN

(1)

where TP= true positive, FN= false negative, FP= false
positive, and TN= true negative. Although the ML classifi-
ers train using information over the entire discharge and the
original curated label is only available at discrete random
times, TP and FP are modified such that a given prediction
is reassigned only if an AE label is nearby within a window
of ±140ms. Lastly, CO2 interferometer, ECE and magnetics
were all used to originally classify AEs in the Large AE-EP
Database, which creates a classification challenge since a cer-
tain mode might show upmore clearly in a different diagnostic
than the CO2 interferometer.

Given these challenges, our prior work using ECE data
accomplished TPR = 91% and FPR = 7%, (table III of [36]).
Our aim here is to match or improve these results using dif-
ferent feature sets of a new diagnostic system (CO2 interfero-
meter) and recurrent neural networks (RCN vs. LSTM).

3. Comparisons and results

In an effort to discover the best performing ML-based model
for this new CO2 interferometer project, several methods
are explored in the following order: (1) linear regression,
(2) MLPs, (3) convolutional neural networks (convnet), and

(4) recurrent neural networks. A brief, qualitative summary
for the regression, MLP and convnet classification appear in
section of the appendix. Here, three major goals are addressed:

1. Compare the features of different inputs, i.e. simple
magnitude and advanced crosspower spectrograms. The
extraction of these different feature sets is discussed in
section 3.1

2. Determine the best performing recurrent neural network
(RCN or LSTM) for this study. The different models are
introduced in section 3.2.

3. Compare the performance of stacking outputs vs. cross-
power combinations (2 simple spectrogram chords and 1
crosspower calculation). Results are shown in section 3.3.

3.1. Inputs

The inputs for both recurrent neural networks are simple mag-
nitude and advanced crosspower spectrograms. These are win-
dowed Fourier transform calculations using a window length
of 4.9ms and overlap of 80%. The spectrograms are down-
sampled using a maxpool function and the final input shapes
are (time, frequency) = (140, 508). Maxpooling is commonly
used in computer vision tasks and produced good results in
this work. For the LSTM model, spectrograms are ‘cut’ into
280ms windows, concatenated and fed into the model. For the
RCN case, windowing is not implemented and the model pro-
cesses 1D vectors of frequencies per training step.More details
about the input preparation for the LSTMmodel can be viewed
in section III of [38].

3.2. Architectures

The Python toolbox PyRCN (Python Reservoir Computing
Networks) [45] is used for optimizing and training the RCN in
this classification project. We utilize the more common RCN
architecture, Echo State Networks (ESNs) [46], to perform the
classification of AEs. Also, the hyper-parameter optimization
routine is handled within the PyRCN framework and is based
on the search strategy introduced in [47].

A two-layer RCN is developed by sequentially stacking two
RCNs [48] on top of each other. It has been shown in [47–
49] that stacking RCNs increases the temporal model capa-
city and reduces errors learned in early layers by rectifying
their outputs in the subsequent layers. Larger capacity (more
temporal information) can improve the RCN’s performance in
detecting specific AEs such as LFM. Figure 4 shows a diagram
of this architecture. The RCN processes a timestamp vector
of frequency values (Nfreq × 1) and uses the provided labels
(Nmodes × 1) to train the readout layer. The output of the first
RCN are scores for each of the five AEs. This output vector is
then fed into the second RCN as input and the second readout
layer is trained using the same labels. The final outputs are
rectified scores for each AE.

The hyperparameter optimization strategy closely follows
the method described in section 3c of [47]. Table 1 shows the
results from the hyperparameter optimization routine for both
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Figure 4. Schematic of the stacked two-layer RCN used to classify AEs trained with simple and crosspower spectrograms. The input layer
of the first RCN is connected to a reservoir of nonlinear neurons and gets mapped to a higher dimensional space, where the data are more
separable. The readout layer of the first RCN is trained using linear regression and processed as inputs for the second RCN. The second
reservoir consists of less neurons since less model capacity is needed to rectify the mistakes of the first layer. The final outputs are AE scores.

Table 1. The results from the hyperparameter optimization routines used to train the RCN network. A sequential search hyperparameter
optimization strategy is used to train the readout layers of the stacked two-layer RCN. Final values for each hyperparameter and each layer
are reported in the final two columns.

Hyper- parameter Range Distribution Layer 1 Layer 2

Input scaling 1× 10−5– 1 uniform 0.03 0.09
Spectral radius 0 to 2 uniform 1.27 0.39
Leakage 1× 10−5– 1 log uniform 0.71 0.71
Bias scaling 1× 10−2– 1 uniform 0.27 0.13
Alpha 1× 10−5– 10 loguniform 6.60 0.00

Table 2. Similar to table 1, only for the LSTM network. A simple sequential scan is implemented here. Final values are listed in the last
column.

Hyperparameter Range Step size Final

Optimizer Adam, Adamax, RMSprop N/A Adam
Learning rate 10−2 − 10−6 ×10−1 10−4

Layers (LSTM) 2− 9 +1 3
Nodes (LSTM) 32− 256 ×2 64
Layers (MLP) 1− 3 +1 3
Nodes (MLP) 64− 512 ×2 128
Dropout layers 1− 3 +1 1
Dropout threshold 0.25− 0.75 +0.25 0.5

layers. The process uses a three-step sequence of searches for
the hyperparameters input scaling, spectral radius, bias scaling
and leakage. The steps of the method are as follows:

1. Perform a random search for the input scaling and spec-
tral radius while the bias scaling and leakage terms are held
constant.

2. Fix the leakage to 1 and search for the bias scaling.
3. Search for the leakage term.

Step 1 determines the balance between forward and recur-
rent connections, step 2 can introduce more non-linearity into
the system, and step 3 determines the attention the network
gives to temporal information in the inputs. The hyperpara-
meters at each step are selected based on the minimization of
the Mean Squared Error (MSE) curve.

The LSTM model consists of three layers using 64 Long-
Short Term Memory cells, one dropout layer with dropout
probability of 0.5, and four layers using MLPs with 128
nodes per layer. All hidden layers utilize relu activation

functions, and the weights are initialized using uniform vari-
ance scaling [35]. The prediction layer consists of 5 nodes with
sigmoid activations and outputs scores for each AE. Binary
Crossentropy is used evaluate the loss score, and the Adam
optimizer with a learning rate of 0.0001 will tune the weights.
The hyperparameters for this network are shown in table 2,
and they are optimized by sequentially scanning values and
analyzing predictions over three selected discharges.

3.3. Results

A data-driven convention is initially implemented to evaluate
the performance of the model, and detailed analysis of the pre-
dicted errors follow. Thus, the TP and FP metrics are modi-
fied such that the time slice of each prediction is reassigned
if any AE label information is available within a window of
±140ms of the predicted timeslice. Two examples at the end
of this section show a few observed errors. Also, comparisons
here evaluate performance over all four CO2 interferometer
chords.

5
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Table 3. Comparison of results using simple and crosspower spectrograms for the RCN and LSTM models. RCN predictions are made
binary (0 and 1) using AEscores= 0.05, 0.15, 0.11, 0.07 and 0.08 for the five AEs listed in the left column. Similarly, the LSTM threshold
values are 0.06, 0.13, 0.13, 0.10 and 0.07. The RCN trained using simple spectrograms is the top performer.

SIMPLE CROSSPOWER

RCN LSTM RCN LSTM

AE TPR FPR TPR FPR TPR FPR TPR FPR

EAE
0.60 0.07 0.72 0.07 0.70 0.06

TAE
0.94 0.26 0.89 0.14 0.94 0.28

RSAE
0.91 0.29 0.89 0.15 0.92 0.28

BAE
0.79 0.23 0.69 0.13 0.79 0.27

LFM
0.80 0.10 0.64 0.02 0.78 0.07

TOTAL
0.90 0.18 0.85 0.10 0.90 0.18

Figure 5. A comparison of the raw RCN and LSTM predictions using simple magnitude (panel (a)) and advanced crosspower (panel (b))
spectrograms for shot #178631. The simple spectrogram is calculated for chord V2 and the crosspower is between chords V2 and R0. The
red vertical ticks and horizontal strikethroughs indicate the curated time stamp and label, respectively. The purple pixels are raw predictions
for the RCN and LSTM models. Regions where the purple pixels overlap the red strikethroughs are considered good agreement. The dotted
regions are times where the curated database does not indicate anything, yet the model is robust enough to capture the AE activity observed
in the spectrograms.

The classification results that compare the RCN and LSTM
model for simple and crosspower spectrograms are summar-
ized by table 3. The results for the simple spectrograms are
nearly equal or better than crosspower spectrograms for the
RCN and LSTM model. Also, the RCN performs slightly

better than the LSTM model when using simple spectro-
grams. The LSTM can trigger slightly stronger predictions
than the RCN. This is visible in the slightly higher TPR
for EAE and FPR for TAE and RSAE. Figure 5 is a spe-
cific example with a lot of AE activity that demonstrates
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Figure 6. AE labels, thresholded predictions and simple magnitude spectrograms for shot #170669. The colored predictions are denoted as
follows: TP= green, FP= orange, FN= red, and TP= black. White vertical lines in the spectrograms indicate the original timestamp.
Error type 1 is due to effects from overfitting, since the model could be triggering scores for LFM due to the overall pattern of the discharge.
Error type 2 occurs due to noise in the spectrograms. Error type 3 is attributed to time delays for predictions. Error type 4 is categorized as a
general AI error, where the model failed to predict correctly. Letter A indicates an incorrectly assigned error since there is still activity but
the ∆t extension of the label is too short. Letter C also indicates an incorrectly assigned error due to ambiguity in the discharge.

the feature set comparison using the RCN and LSTM
models.

Both models might be slightly overestimating detection of
TAE and RSAE since the FPR is relatively higher for these
AEs. Since the RCN triggers slightly lower, the overestim-
ation effect is smaller. In regions where the AI failed, this
is likely due to several reasons: (1) models are overfitting
to training data, (2) noise in the CO2 interferometer spectro-
grams, 3) latency associated with sparse time stamp, (4) gen-
eral AI error. However, there are cases where the AI is work-
ing well, but an error is assigned. Possible reasons for this
are the following: Incorrect value assigned to curated database
through (A)∆t label extension and (B) calling no label stable,
and C) some cases can be ambiguous. Figure 6 illustrates some
of these points. Despite these issues, both models are capable
of learning the patterns associated with AEs in this database
and achieve high performance.

The RCNmodel demonstrates better results, and additional
advantages include finer resolved predictions and the training
speed for an RCN can be faster than for an LSTM. The RCN
substantially improved the linear baseline technique using
only linear regression since the memory of the model is higher
with the addition of reservoirs containing random recurrent
connections. Figure 7 shows the effect of adding a second
layer to the RCNmodel. This effect is similarly observedwhen
adding a third layer and increasing the number of nodes to 64
for the LSTM model.

In an effort to determine the set of chords with the highest
AE detection, we check the performance for one chord,

Figure 7. LFM and EAE predictions using the RCN model for shots
178 636 and 175 985 for CO2 chord V2. A second reservoir
recitifies the mistakes made by the first layer and produces better
predictions for the least common modes in the database.

two-stacked chords or one crosspower combination using the
F2 score. This metric is a harmonic mean of the recall (TPR)
and precision ( TP

TP+FP ) metrics, where β= 2 in the following
equation:

Fβ =
1+β2

β2

Recall +
1

Precision

. (2)

The metrics TP and FP are further modified here by an addi-
tional ∆t=±71 ms in the calculation of the F2 score to cap-
ture more information per chord from the discharges. These

7
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Figure 8. F2 scores for the crosspower (upper diagonal), stacked
chords (lower diagonal) and single chord (right vertical bar)
comparison using the RCN model. Stacking chords can perform
better than crosspower, and chord V2 performs slightly better than
the other three chords.

values are collected into a confusion matrix shown in figure 8.
For the upper diagonal (crosspower), the best performing com-
binations are V2R0, V3R0 and V2V2 (autopower). The anec-
dotal favorite combination in the control room during experi-
ments at DIII-D is V2R0 and the RCN model scores highest
for this combination. For the lower diagonal (stacking out-
puts), adding predictions from V2 to V1 and any chord to
R0 slightly improves the performance of V1 and R0, respect-
ively. Although these differences are small, additional AE
information from different chords might be needed when pre-
dicting using chords V1 or R0. Lastly, the darkest shaded
region indicates that predictions for chord V2 achieve the best
performance.

4. Analysis of metadata

Additional information in the Large AE-EP Database can be
used to study model interpretability, and correlations between
misclassification and operating regime parameters. The fol-
lowing inferred and experimental data are available [35]: (1)
EFIT equilibrium reconstructions [50] provide plasma shape,
magnetic field, and beta information, (2) kinetic temperat-
ure, plasma rotation, and electron and impurity densities from
between-shot profile fitting algorithms, and 3) information
about neutral beams such as injected power, energy, voltage
and orientation. The goal is to determine if there are any tend-
encies with misclassification by calculating Pearson correla-
tion coefficients, r, between TPR and FPR with all 68 para-
meters in the database for the validation set.

Although many parameters have coefficient values near
zero for both TPR and FPR, we report parameters with
the highest values here. For the AE labels, BAE has
the strongest Pearson correlation coefficient with values of
−0.22 and −0.21 for TPR and FPR, respectively. For the
plasma parameters, the strongest correlation for TPR is with

Figure 9. Points for the strongest Pearson correlation coefficient, r,
in the comparison between AE metrics (TPR & FPR) and metadata
are shown here. In panel a, the pitch-angle scattering (PAS) time is
the 90-degree scattering time in the NRL Formulary [51]. The r
between PAS and TPR is 0.20. In panel b, the BAE frequency is
from equation (1) of [52], and the r with FPR is −0.17. Since most
of the analysis shows low correlation values, concerns regarding the
RCN model failing to predict AEs at the limits of the parameter
range are alleviated.

Pitch-Angle-Scattering (PAS) time on axis, and for FPR is
with an analytical calculation of the BAE frequency; see
figure 9. The r for PASwith TPR andBAE frequencywith FPR
are 0.20 and−0.17, respectively. In both cases, there are about
500 points used in the comparison, and an |r| ≃ 0.20 indic-
ates that the dependence is either non-existent or very weak.
Thus, there is no evidence of any dependence on the operat-
ing regime-suggesting that we could safely use the identifier
throughout this parameter range and likely somewhat beyond.

5. Conclusion

Recurrent neural networks are trained using CO2 interfero-
meter data and labels from the Large AE-EP Database on the
DIII-D tokamak. Two models (RCN and LSTM) are trained
separately using simple and crosspower spectrograms. The
additional steps required to calculate crosspower are unneces-
sary since the predictions are similar for both types of inputs.
Both models are trained using one CO2 chord per training step
and achieve high results. The RCN performance is slightly
higher with TPR = 90% and FPR = 14%. Detection using
any single chord is feasible (V2 is slightly better than the
other three). Since the model is primarily trained using labels
marked during the current ramp phase, more cases labelling
the steady-state portion of the discharge would improve gener-
alizability. Lastly, analysis of the metadata demonstrates that
the RCN model still works at the limits of the experimental
parameter ranges.
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The CO2 Interferometer is commonly used in fluctuation
analysis, acquires data for nearly every DIII-D experiment, is
available in the PCS in real-time, and does not have issues with
cutoff frequencies. Given these results and advantages, it is
strongly recommended to detect AEs using RCNs trained with
simple magnitude spectrograms calculated using the vertical
chord passing near center (Rm = 1.94m at DIII-D).

Future workwould consist of implementing the RCN repor-
ted in this paper into real-time control algorithms to detect
AEs at DIII-D. The SOTA detector currently installed on the
PCS is an RCN that trained using ECE data with 8000 and
500 nodes for layers 1 and 2, respectively. It processes time
domain signals and makes predictions in approximately 400
microseconds for each time step. The RCN developed in this
work is smaller for both layers (4000 and 50 nodes). Although
there is an additional step of calculating spectrograms, the
RCN trained using CO2 Interferometer data could have a
similar or faster response time during real-time experiments.
Implementation of Fast Fourier Transforms into the PCS is
currently under consideration and we plan to test it in the near
future.

Acknowledgments

We thank Neal Crocker for helpful comments. This mater-
ial is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Fusion Energy Sciences,
Office of Workforce Development for Teachers and Scientists,
Office of Science Graduate Student Research (SCGSR) pro-
gram, Oak Ridge Institute for Science and Education (ORISE)
Postdoctoral Research Program, using the DIII-D National
Fusion Facility, a DOE Office of Science user facility,
under Award(s) DE-FC02-04ER54698, DE-SC0021275, DE-
SC0020337, DE-SC0014664, DE-SC0014664 and DE-AC02-
09CH11466, Army Research Office (ARO W911NF-19-1-
0045), National Science Foundation under 1633631 andGhent
University Special Research Award No. BOF19/PDO/134.
The SCGSR and Postdoctoral Research Programs are admin-
istered by the Oak Ridge Institute for Science and Education
(ORISE) and managed by ORAU for the DOE.

Disclaimer

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accur-
acy, completeness, or usefulness of any information, appar-
atus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not neces-
sarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein

do not necessarily state or reflect those of the United States
Government or any agency thereof.

Appendix. Linear regression, MLP and Convnets

The crosspower spectrograms were initially used to train
Linear Regression, Multi-Layer Perceptron (MLP) and
Convolutional Neural Networks. For regression, Tikhonov
regularization is used as follows:

Wout =
(
RTR+αI

)−1
RTD, (A1)

where R is the data, D are the labels and α is the regu-
larization parameter. For the MLP network, the models are
nearly the same as the LSTM model described in section 3.2,
only without the LSTM block. Lastly, the convnet contained a
sequence of 5 convolutional and max pooling layers followed
by a small MLP block for the final classification.

All models were capable of detecting the most common
modes (TAE and RSAE) and struggled to detect the other three
modes (BAE, EAE and LFM). This is likely due to the lack
of memory in the models. However, the convnet was capable
of performing slightly better when trained over the entire dis-
charge (similar to the popular cat-dog classification problem)
instead of the windowing technique described in section 3.2.
Although temporal information is lost when training over the
entire discharge, the convnet is capable of predicting the pres-
ence of these modes within approximately 10% of the results
reported in this paper.
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